## Preliminary structural design for Monier Tower

## Student: Giacomo Butte

## Content:

1.Design brief and general assumptions. 2
2. Wind loads calculation 3
3. General considerations on the structural scheme 4
4.1 Slab analysis / levels 19-22 6
4.2 Column design levels 19-22 9
4.3 Slab analysis / levels 3-18 15
4.4 Beam analysis level $2 \quad 17$
4.5 Column (F4) analysis level $2 \quad 19$
5. Horizontal loading, shear walls 23
6. Health and Safety 25
7. References 26
8. Drawings 27

## 1.Design brief and general assumptions.

## Design brief

Develop a structural design scheme for a 22-storey residential tower. Building to be located in the waterside redevelopment area of a regional city centre.

Building functions.
Level -1 Basement
Level 0,1 Retail area Requirements: 8 m column span and 4 m height, 2 lifts, one stair core and 2 escalators
Level 2-17 Residential tower. Requirements: one staircase and two lifts.
Level 18 garden area and residential
Level 19-22 penthouse apartments

## Loadings

Given by design brief. These loadings include an allowance for services. All values are characteristic values.

Cladding: precast concrete cladding including glazing Car parking:
Retail:
Residential:
Circulation:
Podium deck:
Garden deck:
Roof:
$2.0 \mathrm{kN} / \mathrm{m} 2$
$2.5 \mathrm{kN} / \mathrm{m} 2$
5.0 kN/m2
2.5 kN/m2
5.0 kN/m2
$10.0 \mathrm{kN} / \mathrm{m} 2$
$10.0 \mathrm{kN} / \mathrm{m} 2$
2.5 kN/m

## Fire safety

The REI120 class required in the design brief may be revised to REI 90 based on Building Code 2010 Approved Document B Table B4.
Based on BS EN 1992-1-2 Table 5.2a this would set minimum sizes to:
columns 350 mm
distance a 45 mm
solid slab 100 mm
beams $\quad 40 \mathrm{~mm}$ for 300 mm width and 35 mm for 400 mm width3 (Table 5.5)

## Durability

Considering a life span of 50 years, exposure class XS1, structural class S4 (in accordance with EN1992-1-1 Table 4.3N) the cover required is:

| for durability | $35 \mathrm{~mm}+10 \mathrm{~mm}$ | EN1992-1-1 Table $4.4 N$ |
| :--- | :--- | :--- |
| for bonding (given 20 mm rebar) | 20 mm |  |
| for fire protection | 45 mm | EN1992-1-2 Table 5.2a |

## 2. Wind loads calculation

| Basic wind velocity | $v_{b}:=23.5 \frac{\mathrm{~m}}{\mathrm{~s}}$ |
| :--- | :--- |
| Dimension of plan parallel to wind | $d:=16 \mathrm{~m}$ |
| Dimension of plan perpendicular to wind | $b:=25 \mathrm{~m}$ |
| Building height | $h:=70.6 \mathrm{~m}$ |

Terrain roughness for Terrain category 0 (EN1991-1-4 eq4.5):
$z_{0}:=0.003 m \quad z_{\text {min }}:=1 m \quad z_{0 . I I}:=0.05 m$
$k_{r}:=0.19 \cdot\left(\frac{z_{0}}{z_{0.11}}\right)^{0.07}=0.156$
$\begin{aligned} & \text { Roughness factor } \\ & (E N 1991-1-4 \text { eq4.4) }\end{aligned} \quad c_{r}:=k_{r} \cdot \ln \left(\frac{h}{z_{0}}\right)=1.571$
Orographic factor (EN 1991-1-1 4.3.3) considered as 1 due to flatness of site:

$$
c_{0}:=1
$$

Mean wind velocity: $\quad v_{m}:=c_{r} \cdot c_{0} \cdot v_{b}=36.911 \frac{\mathrm{~m}}{\mathrm{~s}}$
Wind turbolence (EN1991-1-1-4 eq.4.7)
k.I considered as 1 as per EN1991-1-1-4 sec4.4(1):
$k_{l}:=1 \quad I_{v}:=\frac{k_{l}}{c_{0} \cdot \ln \left(\frac{h}{z_{0}}\right)}=0.099$
Basic velocity pressure (EN1991-1-1-4 sec4.5(1):
$\rho:=1.25 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad q_{b}:=\frac{1}{2} \rho \cdot v_{b}{ }^{2}=0.345 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
Peak velocity pressure (EN1991-1-1-4 eq.4.8):
$q_{p}:=\left(1+7 I_{v}\right) \cdot \frac{1}{2} \cdot \rho \cdot v_{m}{ }^{2}=1.444 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
Pressure coefficient type (EN1991-1-4 §7.2.1(1))
External coefficient c.pe defined based on Table
7.1 for the differen zones $A, B, C, D, E$.

$$
\begin{array}{ll}
c_{p e A}:=-1.200 & c_{p e C}:=-0.500 \\
c_{p e B}:=-0.800 & c_{p e D}:=0.800
\end{array} \quad c_{p e E}:=-0.671
$$

Internal pressure coefficients chosen according to EN1991-1-1-4 §7.2.9 as:
$c_{\text {pi.min }}:=-0.300 \quad c_{\text {pi.max }}:=0.200$
External wind pressure:
Internal wind pressure:
Net wind pressure
(EN1991-1-1-4§7.2.10)
Pressure zones determined as
EN1991-1-1-4 Fig 7.4 and 7.5:

$$
e:=\min (b, 2 \cdot h)=25 m
$$

Net wind pressure: $\quad$ Zone A: $-2.021 \mathrm{kN} / \mathrm{m} 2$ Zone B: -1.444 kN/m2 Zone D: 1.588 kN/m2 Zone D': 1.338 kN/m2 Zone E: -1.257 kN/m2


D, D'


## 3. General considerations on the structural scheme

The scheme proposed consist of a braced frame structure to a central core. A smaller core runs from foundation to rooftop (shaded in blue in Figure 3.1 and 3.2) and a larger core running from basement to level 18 ( shaded in yellow inFig. 3.2).

## Level 18-22

Considering that the upper levels will be used as a penthouse the structural scheme tried to optimize flexibility of use by creating two uninterrupted spaces (bay 1 and 3). Columns are placed at the edges and braced to the central core via flat slabs (Figure3.1). Flat slabs seemed the better option in terms of floor to ceiling clearance, construction and integration with MEP systems.

Columns E5 and E6 were moved internally to avoid a transfer beam on level 17. This produces a simpler and stronger structure without too much interference in Bay 2 that is assumed to be used as a transition space.

## Level 3-18

Below the upper penthouse the central core expands and incorporates both vertical and horizontal circulation. Slabs and outer columns are braced to it.

On level 17, at the connection of the penthouse levels and the medium part of the building (Fig 3.3), a transfer beam is proposed for: - solve the connection between slanted columns and vertical structural elements coming from upper floors.

- avoid punching shear reinforcement in the slab
- transfer the axial load of column E4 and C4

Flat slabs are proposed with the exception of lower levels (3-6) between grid 2 and 4 where a two way slab supported by beam is proposed. This is due to the span reaching values above 9 m up to 12 m . This was considered uneconomical and creating unnecessary complications in comparison to the benefits of a slimmer slab (1520 cm ).

## Level -1 to 3

The structural layout for the lowest level is driven by the request of obtaining spans of minimum 8 m . Due to spans above 11 m between grid 2 and 4, a system of slab supported by beams was preferred to flat slabs that would generate excessive moments on the columns.

An additional note on columns B7 and F7. The current position was preferred to B8 F8 for structural reasons: the current position is aligned with upper floors while locating them on grid 8 would require a transfer beam. Ultimately the space created at B7 and F7 would not be so of much value considering the location relative to the building.

Due to determined report length, in the following sections only calculation of key structural elements are shown. These were considered the elements that are under the highest structural stress.
After this preliminary design a more detailed and optimized design should be carries.


Figure 3.1: diagram of structural scheme for levels 18-22. Shaded area in blue shows the central core


Figure 3.2: diagram of structural scheme for level 17. The red outline represent the layout of the upper floors. Blue shaded area shows the core reaching the roof while yellow shade indicated the core $f$ up to level 18.


Figure 3.3: position of the transfer beam on level 17

## Level -1 to 3

The structural layout for the lowest level is driven by the request of obtaining spans of minimum 8 m . Due to spans above 11 m between grid 2 and 4, a system of slab supported by beams was preferred to flat slabs that would generate excessive moments on the columns.

An additional note on columns B7 and F7. The current position was preferred to B8 F8 for structural reasons: the current position is aligned with upper floors while locating them on grid 8 would require a transfer beam. Ultimately the space created at B7 and F7 would not be so of much value considering the location relative to the building.

Due to determined report length, in the following sections only calculation of key structural elements are shown. These were considered the elements that are under the highest structural stress.
After this preliminary design a more detailed and optimized design should be carries.


Figure 3.4: diagram of structural scheme for level 3. The structure in front part of the building is made by beam and columns supporting a two way slab. The back of the building hosts flat slabs directly connected to columns.


Figure 3.5: diagram of structural scheme for ground and basement levels. One way and two way slabs supported by beams was the chosen structural scheme for this levels due to the longer span in one section


Figure 3.6: the front part of level 3-6 have spans that reach 12m. A flat slab would not be a convenient solution. Two way slabs supported by beams was chosen instead (red dashed lines).

### 4.1 Slab analysis / levels 19-22

The proposed design divides each level into 3 bays: the central one including the core and circulation and two side ones ( $7.5 \mathrm{~m} \times 9 \mathrm{~m}$ ) without any column interruption to allow for maximum flexibility of use. A flat slab of 300 mm is proposed to maximize floor height.
For construction simplicity the thickness of the slab is constant across the whole floor.

ELEMENT Level 22 , Slab, Bay 1 long span
INITIAL PARAMETERS (EC2 Table 3.1)
$h_{\text {slab }}:=300 \mathrm{~mm} \quad b_{\text {slab }}:=7500 \mathrm{~mm}$ span $_{\text {slab }}:=9 m$
$f_{y d}:=\frac{500}{1.5} \mathrm{MPa} \quad f_{c k}:=30 \mathrm{Mpa} \quad f_{c d}:=20$
$f_{y k}:=500 \cdot 0.9!M P a \quad f_{c t m}:=0.3 \cdot f_{c k}{ }^{.66}=2.832$
dia rebar $:=12 \mathrm{~mm} \quad w_{\text {column }}:=400 \mathrm{~mm}$

## CONCRETE COVER

Fire protection (EN1992-1-2 Table 5.8, REI 120)
Bond (assuming 20 mm bars)
20 mm
Durability for XS1 ( BS 8500-1:Table A4, IIB-V, IIIA) $35+10=45 \mathrm{~mm}$

Cover required for slab is $45 \mathrm{~mm} \quad$ cover $:=45 \mathrm{~mm}$

## EFFECTIVE DIMENSIONS

Effective depth:
$d:=h_{\text {slab }}$ - cover - dia ${ }_{\text {rebar }} \cdot 0.5=249 \cdot \mathrm{~mm}$
Effective spans:
$L_{x}:=9000 \mathrm{~mm} \quad L_{y}:=7500 \mathrm{~mm}$

## LOADINGS

Permanent load: $g_{k}:=h_{\text {slab }} \cdot 25 \frac{\mathrm{kN}}{\mathrm{m}^{3}} \cdot L_{x} \cdot L_{y}=506.25 \cdot \mathrm{kN}$
Variable load

$$
q_{k}:=2.5 \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \cdot L_{x} \cdot L_{y}=168.75 \cdot \mathrm{kN}
$$

Cladding load clad $:=2 \frac{\mathrm{kN}}{\mathrm{m}^{2}} \quad g_{\text {clad }}:=$ clad $\cdot 0.25 \mathrm{~m} \cdot \mathrm{~L}_{x}$
Ultimate load according to EN 1990:2002

$$
n:=1.35\left(g_{k}+g_{c l a d}\right)+1.5 \cdot q_{k}=942.638 \cdot k N
$$



Fig: 2.1 Typical plan for levels 19-22

## MOMENT MID SPAN MIDDLE

Bending moment at the middle strip end span:
(Ref: "How to..." Table 3)
$M_{m_{-} \text {span }}:=0.075 \cdot n \cdot L_{X}=636.28 \mathrm{~m} \cdot \mathrm{kN}$
$M_{m+s p a n}:=516 \mathrm{kN} \cdot \mathrm{m}$ from moment distribution
Middle strip take 0.4 of the load
$M_{\text {mid }}:=0.4 \cdot M_{m_{\text {_span }}}=206.4 \cdot \mathrm{kN} \cdot \mathrm{m}$
$K:=\frac{M_{\text {mid }}}{\left(b \cdot d^{2} \cdot f_{c k}\right)}=0.025$
$Z:=d \cdot\left[0.5+\left(0.25-\frac{K}{1.133}\right)^{0.5}\right]=243.457 \cdot m m$
$\frac{Z}{d}=0.978 \quad$ use $\quad Z:=0.95 \cdot d=236.55 \cdot \mathrm{~mm}$
$A_{s}:=\frac{M_{\text {mid }}}{0.87 \cdot f_{y k} \cdot Z}=2.111 \times 10^{3} \quad \mathrm{~mm}^{2}$
$A_{s_{-} m m}:=\frac{A_{s} \cdot \mathrm{~mm}^{2}}{L_{X} \cdot 0.5}=469.204 \cdot \frac{\mathrm{~mm}^{2}}{\mathrm{~m}}$
$A_{s_{-} e f f}:=770 \frac{\mathrm{~mm}^{2}}{\mathrm{~m}} \quad \mathrm{H} 14$ at $200 \mathrm{c} / \mathrm{c}(770 \mathrm{~mm} 2)$

$$
\rho:=\frac{A_{\text {s_eff }}}{h_{\text {slab }} \cdot 1}=0.257 \cdot \%
$$

## MOMENT MID SPAN COLUMN

Column strip takes 0.6
$M_{\text {col }}:=0.6 \cdot M_{m_{-} \text {span }}=309.6 \cdot \mathrm{kN} \cdot \mathrm{m}$
$K:=\frac{M_{c o l}}{b \cdot d^{2} \cdot f_{c k}}=0.037$
$Z:=d \cdot\left[0.5+\left(0.25-\frac{K}{1.133}\right)^{0.5}\right]=240.587$
$\frac{Z}{d}=0.966 \quad$ use $\quad Z:=0.95 \cdot d=236.55$
$A_{S_{-} t o t}:=\frac{M_{\mathrm{col}}}{0.87 \cdot f_{y k} \cdot Z}=3.167 \times 1 \mathrm{cmm}^{2}$
$A_{s_{-} m c}:=\frac{A_{s_{-} t o t} \cdot \mathrm{~mm}^{2}}{L_{X} \cdot 0.5}=703.805 \cdot \frac{\mathrm{~mm}^{2}}{\mathrm{~m}}$
H14 at 175c/c ( 880 mm 2 )

## MOMENT SUPPORT SPAN MIDDLE

$M_{m \_ \text {support }}:=536 \mathrm{kN} \cdot \mathrm{m}$ from moment distribution
Middle strip take 0.4 of the load
$M_{\text {mid }}:=0.4 \cdot M_{m_{\text {_support }}}=214.4 \cdot \mathrm{kN} \cdot \mathrm{m}$
$K:=\frac{M_{\text {mid }}}{\left(b \cdot d^{2} \cdot f_{c k}\right)}=0.026$
$Z:=d \cdot\left[0.5+\left(0.25-\frac{K}{1.133}\right)^{0.5}\right]=243.237 \cdot m m$
$\frac{Z}{d}=0.977 \quad$ use $\quad Z:=0.95 \cdot d=236.55 \cdot \mathrm{~mm}$
$A_{s}:=\frac{M_{\text {mid }}}{0.87 \cdot f_{y k} \cdot Z}=2.084 \times 10^{3} \mathrm{~mm}^{2}$
$A_{s_{-} m m}:=\frac{A_{s_{s}} \cdot \mathrm{~mm}^{2}}{L_{X} \cdot 0.5}=463.02 \cdot \frac{\mathrm{~mm}^{2}}{\mathrm{~m}}$
H12 at $200 \mathrm{c} / \mathrm{c}(565 \mathrm{~mm} 2)$

Note that H14@250 was not chosen t control cracking above 0.3 mm as shown below:

## BAR SPACING

$f_{y k}:=500 \mathrm{MPa} \quad \gamma_{m s}:=1.14 \quad \psi_{2}:=0.3 \quad \delta:=1$
$A_{s^{\prime}}:=A_{s_{-} m m} \quad A_{s_{-} e f f}:=616 \frac{\mathrm{~mm}^{2}}{\mathrm{~m}}$
$\sigma_{z}:=\frac{f_{y k}}{\gamma_{m s}}\left(\frac{\psi_{2} \cdot q_{k}+g_{k}}{1.5 q_{k}+1.35 g_{k}}\right) \cdot\left(\frac{A_{s}}{A_{s_{-} \text {eff }}}\right) \cdot \frac{1}{\delta}=196.022 \cdot \mathrm{MPa}$
From Table 5.6 from BCA2006, maximum distance between bars to avoid crack $>0.3 \mathrm{~mm}$ :

MOMENT SUPPORT, COLUMN
$M_{m_{\text {_ }}}$ support $:=536 \mathrm{kN} \cdot \mathrm{m}$ from moment distribution
Middle strip take 0.6 of the load
$M_{\text {col }}:=0.6 \cdot M_{m_{-}}$support $=321.6 \cdot \mathrm{kN} \cdot \mathrm{m}$
$K:=\frac{M_{\text {col }}}{\left(b \cdot d^{2} \cdot f_{c k}\right)}=0.038$
$Z:=d \cdot\left[0.5+\left(0.25-\frac{K}{1.133}\right)^{0.5}\right]=240.248$
$\frac{Z}{d}=0.965 \quad$ use $\quad Z:=0.95 \cdot d=236.55$
$A_{s}:=\frac{M_{c o l}}{0.87 \cdot f_{y k} \cdot Z}=3.125 \times 10^{3} \mathrm{~mm}^{2}$
$A_{s_{-} m m}:=\frac{A_{s} \cdot \mathrm{~mm}^{2}}{L_{X} \cdot 0.5}=694.53 \cdot \frac{\mathrm{~mm}^{2}}{\mathrm{~m}}$

## H14 at $175 \mathrm{c} / \mathrm{c}$ ( 880 mm 2 )

$A_{\text {s_eff }}:=880 \frac{\mathrm{~mm}^{2}}{\mathrm{~m}} \quad \rho:=\frac{A_{\text {s_eff }}}{h_{\text {slab }} \cdot 1}=0.293 . \%$

## DEFLECTION

Span to effective ratio, $\rho=0.3 \%$, fck $=30$

$$
N:=39.2
$$

"How to..." Table C10
Flat slab, EN1992-1-1 Table 7.4N
$K:=1.2$
$\mathrm{Gk} / \mathrm{Qk}=2.5, \psi=0.3, \gamma=1.25$
"How to..." Fig.C3
Redistribution ratio
$\delta:=1.08$
$A_{S_{-} m m}$
$\sigma_{s}:=\sigma_{\text {su }} \cdot \frac{A_{s_{-} m m}}{A_{S_{-} e f f} \cdot \delta}=212.969 \frac{1}{\mathrm{~m}} \cdot \mathrm{MPa}$
b_eff/b_w=1 "How to.." Table C12
No brittle partition "How to.." Table C13
$F 1:=1 \quad F 2:=1 \quad F 3:=\frac{310 \mathrm{MPa}}{\sigma_{S}}=1.456 \mathrm{~m}$
Allowable deflection

$$
N \cdot K \cdot F 1 \cdot F 2 \cdot F 3=68.472 m
$$

Actual

$$
\frac{\text { span }_{\text {slab }}}{d \cdot m m}=36.145 \quad \text { OK }
$$

## Crack control

Steel stress under quasi permanent loading:
$\sigma_{z}:=\frac{f_{y k}}{\gamma_{m s}}\left(\frac{\psi_{2} \cdot q_{k}+g_{k}}{1.5 q_{k}+1.35 g_{k}}\right) \cdot\left(\frac{A_{s_{-}} m m}{A_{s_{-} \text {eff }}}\right) \cdot \frac{1}{\delta}=217.803 \mathrm{MPa}$
Maximum diameter 20 mm or distance 225 mm .
H28@122 acceptable.

## PUNCHING SHEAR

$w_{\text {col }}:=350 \mathrm{~mm} \quad b_{\text {col }}:=450 \mathrm{~mm}$
$u_{0}:=\left(w_{\text {col }}+b_{\text {col }}\right) \cdot 2 \quad \beta:=1.5$
As per Figure 6.21N in EN 1992-1-1-2004
$n_{m 2}:=\frac{n}{L_{x} \cdot L_{y}}=13.965 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
$V_{E d}:=\left(\frac{L_{x}}{2} \cdot \frac{L_{y}}{2}-w_{c o l} \cdot b_{c o l}\right) \cdot n_{m 2} \cdot \beta=350.19 \cdot k N$
$\frac{V_{E d}}{u_{0} \cdot d}=0.879 \cdot \mathrm{MPa}$
$v:=0.6 \cdot\left(1-\frac{f_{c k}}{250}\right)=0.528 f_{c d}:=1 \cdot 1 \cdot \frac{f_{c k}}{1.5}=20$
$v_{R d}:=0.5 \cdot v \cdot f_{c d}=5.28$

## No additional reinforcement needed

PUNCHING SHEAR AT 2d
$u_{1}:=2 \cdot\left(b_{c o l}+w_{c o l}\right)+2 \cdot \pi \cdot 2 \cdot d=4.729 m \quad \gamma_{c}:=1.5$
$v_{U S F}:=n_{m 2} \cdot \frac{L_{x}}{2} \cdot \frac{L_{y}}{2} \ldots$
$=252.104 \cdot \mathrm{kN}$

$$
+n_{m 2} \cdot\left[\begin{array}{l}
w_{\mathrm{col}} \cdot 2 \cdot d \ldots \\
+b_{\mathrm{col}} \cdot d \cdot 2+\pi \cdot(2 \cdot d)^{2}
\end{array}\right]
$$

$v_{u 1}:=\frac{1.15 \cdot v}{u_{1} \cdot d}=0.246 \cdot \mathrm{MPa} \quad$ Stress at u1
$\rho_{I X}:=\frac{1130}{d \cdot 1000}=4.538 \times 10^{-3}$
$\rho_{l y}:=\frac{1130}{d \cdot 1000}=4.538 \times 10^{-3}$
$C_{R d_{-} c}:=\frac{0.18}{\gamma_{c}}=0.12$
$k:=\left(1+\frac{200}{d}\right)^{0.5}=1.343 \quad \rho_{1}:=\left(\rho_{l x} \cdot \rho_{l y}\right)^{0.5}$
$v_{R d \_c}:=C_{R d \_c} \cdot k \cdot\left(100 \cdot \rho_{1} \cdot f_{c k}\right)^{\cdot 33} \cdot \mathrm{MPa}=0.381 \cdot \mathrm{MPa}$
$V_{R d \_c}:=v_{R d \_c} \cdot u_{1} \cdot d=449.155 \cdot \mathrm{kN}$

$$
v_{U S F}=252.104 \cdot k N
$$

Punching shear reinforcement not needed

Grid E / Level 19-22
Loading

| $Q_{k} 22.5 \mathrm{kN} / \mathrm{m}$ | $Q_{k} 8.2$ | $Q_{k} 22.5 \mathrm{kN} / \mathrm{m}$ |
| :---: | :---: | :---: |
| $\mathrm{G}_{\mathrm{k}} 56.2 \mathrm{kN} / \mathrm{m}$ | $\mathrm{G}_{\mathrm{k}} 20$ | $\mathrm{G}_{\mathrm{k}} 56.2 \mathrm{kN} / \mathrm{m}$ |
|  |  |  |
| 7.5 m | 4 m | 7.5 m |



Shear


Column moment


Grid 4 / Level 19


## Summary for slab analysis levels 19-22

## Slab type: flat slab across the whole level

 Thickness: $\quad 300 \mathrm{~mm}$ across the whole level for ease of constructionPunching shear reinforcement is not needed near the supports. Reinforcement is estimated as follows. Refer to Figure 2.1 for strip numbering. Note: redistributing reinforcement within the strips and according to code would be needed.

| Bay | Direction | Strip |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $1,3,7,9$ | 2,8 | 4,6 | 5 |
| 1,3 | Y | H10@200 | H18@150 | H8@200 | H14@125 |
|  | Z | H16@150 | H10@150 | H10@125 | H10@150 |
| 2 | Y | H8@125 | H8@150 | H8@150 | H8@150 |
|  | Z | H8@150 | H8@150 | H8@150 | H8@150 |

### 4.2 Column design levels 19-22

## Column E5 and E6

Analysis for internal column E5 and E6. The structural layout (Fig. 4.2.1) was simplified. The single bays (indicated as 45 and 56 in the calculation) are simplified as as shown in Fig 4.2.2. This simplification was only used for the moment calculation. The structure is still considered braced to the central core. The size of the column ( 350 mm ) is limited by fire regulation.

## COLUMN Level 18 Column E6

## DIMENSIONS AND MATERIALCHARACTERISTICS

## Column

$y:=350 \mathrm{~mm}$
Slab Grid 4-5
$y_{45}:=7.5 m$

$$
z:=400 \mathrm{~mm} \quad h_{c o l}:=3.5 \mathrm{~m}
$$

Slab Grid 4-5

Slab Grid 5-6
$y_{56}:=4 m \quad z_{56}:=3.3 m$
dia $_{\text {bar }}:=12 \mathrm{~mm} \quad$ dia $_{\text {link }}:=8 \mathrm{~mm}$
$f_{c d}:=\frac{30}{1.5} \mathrm{MPa} \quad f_{y d}:=\frac{500}{1.5} \mathrm{MPa}$

## COVER

As per EN1992-1-2 TAble 5.2a and REI120 45mm cover $:=45 \mathrm{~mm}$

## ACTIONS

Load from slab weight, variable load and cladding.
$Y$ direction grid 4-6, $Z$ direction grid $E$ to $F$

$$
\begin{aligned}
& g_{k}:=25 \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \cdot h_{\mathrm{slab}}=7.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \\
& q_{k}:=2.5 \frac{\mathrm{kN}}{\mathrm{~m}^{2}}=2.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \quad q_{\mathrm{k} 2}:=5 \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \\
& g_{k 45}:=z_{45} \cdot 1.35 \cdot g_{k}=91.125 \cdot \frac{\mathrm{kN}}{\mathrm{~m}} \\
& q_{k 45}:=z_{45} \cdot 1.5 \cdot q_{k}=33.75 \cdot \frac{\mathrm{kN}}{\mathrm{~m}} \\
& g_{k 56}:=z_{56} \cdot 1.35 \cdot g_{k}=33.413 \cdot \frac{\mathrm{kN}}{\mathrm{~m}} \\
& q_{k 56}:=z_{56} \cdot 1.5 \cdot q_{k 2}=24.75 \cdot \frac{\mathrm{kN}}{\mathrm{~m}}
\end{aligned}
$$



Figure 4.2.1: diagram of structural scheme for levels 18-22


Figure 4.2.2: simplified scheme for bay 4-5 (left) and bay 5-6 and column analysis. Note the frame is still considered braced.



Figure 4.2.3 combination of actions


Figure 4.2.4 distribution factors along $Y$ (Grid 5) and $Z$ (Grid E)


Figure 4.2.5: moment distribution along $Y$ (Grid 5)

## Axial Load

Area supported by the column on bay1 (grid 4-5):

$$
\begin{aligned}
& A_{45}:=z_{45} \cdot y_{45} \cdot 0.25=16.875 m^{2} \\
& A_{56}:=z_{56} \cdot y_{56} \cdot 0.25=3.3 \mathrm{~m}^{2}
\end{aligned}
$$

Load per floor:

$$
\begin{aligned}
& U D L_{56}:=A_{56} \cdot\left(1.5 g_{k}+1.5 q_{k 2}\right)=61.875 \cdot k N \\
& U D L_{45}:=A_{45} \cdot\left(1.35 g_{k}+1.5 q_{k}\right)=234.141 \cdot k N
\end{aligned}
$$

Load from column
$g_{C O I}:=y \cdot z \cdot 4 \cdot 3.5 \mathrm{~m} \cdot 25 \frac{\mathrm{kN}}{\mathrm{m}^{3}}=49 \cdot \mathrm{kN}$
Load from cladding:

$$
\begin{aligned}
g_{\text {clad }}:= & 2.5 \frac{k N}{m^{2}} \cdot\left(\frac{y_{45}+y_{56}}{2}\right) \cdot 3.5 \cdot 4 m=201.25 \cdot \mathrm{kN} \\
N_{E d}:= & 5 \cdot\left(U D L_{56}+U D L_{45}\right) \cdots=1.706 \times 10^{3} \cdot \mathrm{kN} \\
& +-\left(A_{56} \cdot 1.5 q_{k 2}\right)+g_{\text {col }} \ldots \\
& +g_{\text {clad }}
\end{aligned}
$$

## DISTRIBUTION FACTORS

Stiffness, upper column $\quad E_{u c}:=\frac{y^{3} \cdot z}{h_{C O l}}=4.9 \mathrm{~L}$
Stiffness, lower column

$$
E_{l c}:=E_{u c}
$$

Stiffness, slab grid 45:

$$
E_{s / 45}:=z_{45} \cdot \frac{h_{s l a b}^{3}}{y_{45}}=32.4 \mathrm{~L}
$$

Stiffness, slab grid 45:

$$
E_{s / 56}:=z_{56} \cdot \frac{h_{s l a b}^{3}}{y_{56}}=22.275 L
$$

Distribution factor upper and lower column

$$
D F_{u c}:=\frac{E_{u c}}{E_{l c}+E_{u c}+E_{s / 45}+E_{s / 56}}=0.076
$$

Distribution factor Ydirection slab 45

$$
D F_{s / 45}:=\frac{E_{s / 45}}{E_{l c}+E_{u c}+E_{s / 45}+E_{s / 56}}=0.503
$$

Distribution factor $Y$ direction slab 56

$$
D F_{s / 56}:=\frac{E_{s / 56}}{E_{/ c}+E_{u c}+E_{s / 45}+E_{s / 56}}=0.345
$$

Distribution factor $Z$ direction column

$$
D F_{u c_{-} z}:=\frac{E_{u c}}{E_{l c}+E_{u c}+E_{s / 45}}=0.116
$$

## SLENDERNESS CHECK

factor := 0.85
From BS8110:Part 1:1997
$I_{0}:=(3500 \mathrm{~mm}-300 \mathrm{~mm}) \cdot$ factor $=2.72 \mathrm{~m}$
$\lambda_{z}:=3.46 \cdot \frac{I_{0}}{z}=23.528 \quad \lambda_{y}:=3.46 \cdot \frac{I_{0}}{y}=26.889$

$$
A:=0.7
$$

A.s taken from end of calculation:
$\omega:=\frac{A_{s} \cdot f_{y d}}{y \cdot z \cdot f_{c d}}=0.292 \quad B:=(1+2 \cdot \omega)^{0.5}=1.259$
Worst case for braced structures

$$
C:=1.7
$$

$n:=\frac{N_{E d}}{y \cdot z \cdot{\text { factor } \cdot f_{c d}}}=0.717$
$\lambda_{\text {lim }}:=20 \cdot \frac{A \cdot B \cdot C}{n^{0.5}}=35.395$
Column not slender since $\lambda \lim >\lambda y$ and $\lambda z$

## MOMENTS IN Y DIRECTION

From moment distribution (see Table 4.2.1):
$M_{E d y y}:=74 \mathrm{kN} \cdot \mathrm{m}$
On the $z$ direction
$U D L_{z 56}:=y_{56} \cdot\left(1.35 \cdot g_{k}+1.5 \cdot q_{k 2}\right)=70.5 \cdot \frac{\mathrm{kN}}{\mathrm{m}}$
On the $Z$ direction the cantilever produces a moment opposite and greater than the internal part of the slab

$$
\begin{aligned}
M_{E d z z}:= & \frac{\left(\frac{z_{56}}{2} \cdot U D L_{56}\right)}{12} \ldots=-93.586 \cdot \mathrm{kN} \cdot \mathrm{~m} \\
& +\frac{-z_{56}}{2} \cdot U D L_{56}
\end{aligned}
$$

$$
M_{E d z z}:=-M_{E d z z}
$$

## DESIGN REINFORCEMENT


$d_{2}:=$ cover + dia $_{\text {link }}+$ dia $_{\text {bar }} \cdot 0.5=0.059 m$
$\frac{d_{2}}{z}=0.147$
From chart with d/z of 0.15 As F.yk/bhf.yk
(Harrison2007a, p39)
ratio $:=0.05$
$A_{s}:=\frac{\text { ratio } \cdot y \cdot z \cdot f_{c k}}{f_{y k}}=420 \cdot \mathrm{~mm}^{2}$
8 bars H12 ( $905 \mathrm{~mm} \wedge 2$ )
Crushing load of a truly loaded column
may be taken as: (Mosley, p.267)
$N_{u d}:=0.567 \cdot f_{c k} \cdot y \cdot z+0.87 \cdot A_{s} \cdot f_{y k}=2.564 \times 10^{3} \cdot \mathrm{kN}$
$N_{E d}=1.706 \times 10^{3} \cdot \mathrm{kN}$
Minimum area of steel needs to be above 0.002Ac
$A s_{\min }:=0.002 \cdot y \cdot z=280 \cdot \mathrm{~mm}^{2} \quad \frac{A_{s}}{z \cdot y}=0.3 . \%$

## DESIGN FIRE RESISTANCE

check that effective length $<3 \mathrm{~m}$

$$
\begin{equation*}
I_{0}:=(3.1 m-0.3 m) \cdot .85=2.38 m \tag{OK}
\end{equation*}
$$

check e<e.max $\quad \mathrm{e}:=\frac{M_{E d y y}}{N_{E d}}=0.043 \mathrm{~m}$

$$
\begin{equation*}
e_{\max }:=0.15 \cdot z=0.06 m \tag{OK}
\end{equation*}
$$

Check reinforcement $<4 \% \quad \frac{A_{s}}{z \cdot y}=0.3 . \%$

## CHECK BIAXIAL BENDING

$N_{E d}=1.706 \times 10^{6} \mathrm{~N}$
$e_{z}:=\frac{M_{E d z z}}{N_{E d}}=54.871 \cdot \mathrm{~mm} \quad e_{y}:=\frac{M_{E d y y}}{N_{E d}}=43.387 \cdot \mathrm{~mm}$
$\frac{e_{y}}{e_{z}}=0.791 \quad \begin{aligned} & \text { between } 0.2 \text { and } 5, \text { design for biaxial } \\ & \text { bending needs to be checked }\end{aligned}$
From chart obtain ratio of As f.yk/bhf.ck
Previously calculated reinforcement not enough,
8 H 12 ( 905 mm 2 ) used instead
$A_{s_{-} e f f}:=905 \mathrm{~mm}^{2} \quad A_{s_{-} e f f} \cdot \frac{f_{y k}}{y \cdot z \cdot f_{c k}}=0.108$
$\frac{N_{E d}}{z \cdot y \cdot f_{c k}}=0.406 \quad \frac{d_{2}}{y}=0.169$
$f_{\text {chart }}:=0.088$
$M_{R d}:=f_{c h a r t} \cdot y \cdot z^{2} \cdot f_{c k}=147.84 \cdot \mathrm{kN} \cdot \mathrm{m}$
$N_{R d}:=z \cdot y \cdot f_{c d} \cdot 0.85+A_{s_{-}}$eff $\cdot f_{y d}=2.682 \times 10^{3} \cdot \mathrm{kN}$ Value for a obtained from chart (Harrison2007a, Table 5):
$\frac{N_{E d}}{N_{R d}}=0.636 \quad a:=1+\left(\frac{N_{E d}}{N_{R d}}-0.1\right) \cdot \frac{0.5}{0.6}=1.447$
$\left(\frac{M_{E d z z}}{M_{R d}}\right)^{a}+\left(\frac{M_{E d y y}}{M_{R d}}\right)^{a}=0.884$

Acceptable

## CHECK REINFORCEMENT

$$
\text { As minimum } \quad \frac{0.10 N_{E d}}{f_{y d}}=511.673 \cdot \mathrm{~mm}^{2}
$$

Reinforcement to area ratio

$$
\frac{A_{s_{-} e f f}}{y \cdot z}=0.646 \cdot \%
$$

Reinforcement is above $0.2 \%$ and below $4 \%$ and above As minimum.

## TRANSVERSE REINFORCEMENT

## Ref. EC2 9.5.3\&NA

Diameter of bar shoudl exceed 6 m of $1 / 4$ of reinforcement bars

$$
\operatorname{dia}_{\min }:=\text { dia }_{\text {bar }} \cdot 0.25=3 \cdot \mathrm{~mm}
$$

Spacing given by the minimum

$$
\begin{aligned}
& 20 \cdot \mathrm{dia} \\
& y=350 \cdot \mathrm{~mm} \\
& 400 \cdot \mathrm{~mm} \\
& 400 \mathrm{~mm}=400 \cdot \mathrm{~mm}
\end{aligned}
$$

H6 @ 240 mm

## Column E4, C4, E8, C8

Analysis for corner columns. The structural layout (Fig. 4.2.1) was simplified. Unlike for the internal columns, no simplification was done. Moments were analysed using equivalent frame method.

COLUMN Level 18 Column E4
DIMENSIONS AND MATERIALCHARACTERISTICS
Column
$y:=350 \mathrm{~mm} \quad z:=400 \mathrm{~mm} \quad h_{\text {col }}:=3.5 \mathrm{~m}$
Slab Grid 4-5
$y_{45}:=7.5 m \quad z_{45}:=9 m \quad h_{\text {slab }}:=.30 m$
dia ${ }_{\text {bar }}:=14 \mathrm{~mm} \quad$ dia $_{\text {link }}:=6 \mathrm{~mm}$
$f_{c d}:=\frac{30}{1.5} \mathrm{MPa} \quad f_{y d}:=\frac{500}{1.5} \mathrm{MPa}$

## COVER

As per EN1992-1-2 TAble 5.2a and REI120 45mm cover :=45mm

## ACTIONS

Load from slab weight, variable load and cladding.
$Y$ direction grid 4-6, $Z$ direction grid $E$ to $F$
$g_{k}:=25 \frac{\mathrm{kN}}{\mathrm{m}^{3}} \cdot h_{s l a b}=7.5 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
$q_{k}:=2.5 \frac{\mathrm{kN}}{\mathrm{m}^{2}}=2.5 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{2}} \quad q_{k 2}:=5 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
$g_{k 45}:=z_{45} \cdot 1.35 \cdot g_{k}=91.125 \cdot \frac{\mathrm{kN}}{\mathrm{m}}$
$q_{k 45}:=z_{45} \cdot 1.5 \cdot q_{k}=33.75 \cdot \frac{\mathrm{kN}}{\mathrm{m}}$

## Axial Load

Area supported by the column on bay1 (grid 4-5):
$A_{45}:=z_{45} \cdot y_{45} \cdot 0.25=16.875 \mathrm{~m}^{2}$
Load per floor:
$U D L_{45}:=A_{45} \cdot\left(1.35 g_{k}+1.5 q_{k}\right)=234.141 \cdot \mathrm{kN}$

Load from column
$g_{C O I}:=y \cdot z \cdot 4 \cdot 3.5 \mathrm{~m} \cdot 25 \frac{\mathrm{kN}}{\mathrm{m}^{3}}=49 \cdot \mathrm{kN}$
Load from cladding:
$g_{\text {clad }}:=2.5 \frac{\mathrm{kN}}{\mathrm{m}^{2}} \cdot\left(\frac{y_{45}+z_{45}}{2}\right) \cdot 3.5 \cdot 4 m=288.75 \cdot \mathrm{kN}$
$N_{E d}:=5 \cdot\left(U D L_{45}\right)+g_{\text {Col }}+g_{\text {clad }}=1.508 \times 10^{3} \cdot \mathrm{kN}$

## SLENDERNESS CHECK

factor := 0.85
From BS8110:Part 1:1997
$I_{0}:=(3500 \mathrm{~mm}-300 \mathrm{~mm}) \cdot$ factor $=2.72 \mathrm{~m}$
$\lambda_{z}:=3.46 \cdot \frac{I_{0}}{z}=23.528 \quad \lambda_{y}:=3.46 \cdot \frac{I_{0}}{y}=26.889$
$A:=0.7$
A.s taken from end of calculation:
$A_{S}:=1.23 \cdot 10^{3} \mathrm{~mm}^{2}$
$\omega:=\frac{A_{S} \cdot f_{y d}}{y \cdot z \cdot f_{c d}}=0.146 \quad B:=(1+2 \cdot \omega)^{0.5}=1.137$
Worst case for braced
structures

$$
C:=1.7
$$

$n:=\frac{N_{E d}}{y \cdot z \cdot \text { factor } \cdot f_{c d}}=0.634$
$\lambda_{\text {lim }}:=20 \cdot \frac{A \cdot B \cdot C}{n^{0.5}}=33.992$
Column not slender since $\lambda \lim >\lambda y$ and $\lambda z$

## MOMENTS

From moment distribution (see table 4.2.1)
the column would receive a moment in Y direction of:
$M_{\text {Edyy }}:=96 \mathrm{kN} \cdot \mathrm{m}$
On the $Z$ direction the moment would be:
$M_{E d z z}:=133 \mathrm{kN} \cdot \mathrm{m}$
Transfer to edge and corner column, both upper and lower, is limited to Mmax
(and therefore lower column to Mmax/2):
$d_{\text {slab }}:=245 \mathrm{~mm}$
$M_{\text {max }}:=0.17 \cdot(z+y) \cdot d_{s l a b}{ }^{2} \cdot f_{c k}=229.596 \cdot \mathrm{kN} \cdot \mathrm{m}$
Therefore none of the moments is greater than maximum value.

## DESIGN REINFORCEMENT

$f_{c k}:=30 \mathrm{MPa}$
$\frac{M_{E d z z}}{y \cdot z^{2} \cdot f_{c k}}=0.079$
$f_{y k}:=500 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$
$d_{2}:=$ cover + dia $_{\text {link }}+$ dia $_{\text {bar }} \cdot 0.5=0.058 m$
$\frac{d_{2}}{z}=0.145$
From chart with d/z of 0.15 As F.yk/bhf.yk
(Harrison2007a, p39)
ratio := 0.06
$A_{s}:=\frac{\text { ratio } \cdot y \cdot z \cdot f_{c k}}{f_{y k}}=504 \cdot \mathrm{~mm}^{2}$
8 bars H 14 ( $905 \mathrm{~mm} \mathrm{~A}^{\wedge} 2$ )
Crushing load of a truly loaded column
may be taken as: (Mosley, p.267)
$N_{u d}:=0.567 \cdot f_{c k} \cdot y \cdot z+0.87 \cdot A_{s} \cdot f_{y k}=2.601 \times 10^{3} \cdot k N$
$N_{E d}=1.508 \times 10^{3} \cdot \mathrm{kN}$
Minimum area of steel needs to be above 0.002Ac
$A s_{\text {min }}:=0.002 \cdot y \cdot z=280 \cdot \mathrm{~mm}^{2} \quad \frac{A_{s}}{z \cdot y}=0.36 \cdot \%$

## DESIGN FIRE RESISTANCE

check that effective length $<3 \mathrm{~m}$
$I_{0}:=(3.1 m-0.3 m) \cdot .85=2.38 m$
OK
check e<e.max $\quad e:=\frac{M_{E d y y}}{N_{E d}}=0.064 \mathrm{~m}$

$$
\begin{equation*}
e_{\max }:=0.15 \cdot z=0.06 m \tag{OK}
\end{equation*}
$$

CHECK BIAXIAL BENDING
$N_{E d}=1.508 \times 10^{3} \cdot \mathrm{kN}$
$e_{z}:=\frac{M_{E d z z}}{N_{E d}}=88.17 \cdot \mathrm{~mm} \quad e_{y}:=\frac{M_{E d y y}}{N_{E d}}=63.641 \cdot \mathrm{~mm}$
$\frac{e_{y}}{e_{z}}=0.722 \quad \begin{aligned} & \text { between } 0.2 \text { and } 5, \text { design for biaxial } \\ & \text { bending needs to be checked }\end{aligned}$
From chart obtain ratio of As f.yk/bhf.ck
Previously calculated reinforcement not enough, 8 H14 (1230 mm2) used instead
$A_{s_{-} e f f}:=1230 \mathrm{~mm}^{2} \quad A_{s_{-} e f f} \cdot \frac{f_{y k}}{y \cdot z \cdot f_{c k}}=0.146$
$\frac{N_{E d}}{z \cdot y \cdot f_{c k}}=0.359 \quad \frac{d_{2}}{y}=0.166$
$f_{\text {chart }}:=0.11$
$M_{R d}:=f_{\text {chart }} \cdot y \cdot z^{2} \cdot f_{c k}=184.8 \cdot \mathrm{kN} \cdot \mathrm{m}$
$N_{R d}:=z \cdot y \cdot f_{c d} \cdot 0.85+A_{s_{-} \text {eff }} \cdot f_{y d}=2.79 \times 10^{3} \cdot \mathrm{kN}$
Value for a obtained from chart (Harrison2007a, Table 5):
$\frac{N_{E d}}{N_{R d}}=0.541 \quad a:=1+\left(\frac{N_{E d}}{N_{R d}}-0.1\right) \cdot \frac{0.5}{0.6}=1.367$
$\left(\frac{M_{E d z z}}{M_{R d}}\right)^{a}+\left(\frac{M_{E d y y}}{M_{R d}}\right)^{a}=1.046$

Acceptable

## CHECK REINFORCEMENT

As minimum

$$
\frac{0.10 N_{E d}}{f_{y d}}=452.536 \cdot \mathrm{~mm}^{2}
$$

Reinforcement to area ratio

$$
\frac{A_{s_{-} e f f}}{y \cdot z}=0.879 \cdot \%
$$

Reinforcement is above $0.2 \%$ and below $4 \%$ and above As minimum.

## TRANSVERSE REINFORCEMENT

Ref. EC2 9.5.3\&NA
Diameter of bar shoudl exceed 6 m of $1 / 4$ of reinforcement bars
dia min $:=$ dia $_{\text {bar }} \cdot 0.25=3.5 \cdot \mathrm{~mm}$
Diameter 6mm
Spacing given by the minimum

$$
\begin{aligned}
& 20 \cdot \mathrm{dia} \\
& y=350 \cdot \mathrm{~mm} \\
& 400 \mathrm{~mm}=400 \cdot \mathrm{~mm}
\end{aligned}
$$

Table 4.2.1: moment distribution along $Y$ direction (Grid E)

| Load G /m2 |  | 7.25 |  |  |  | 7.25 |  |  |  | 7.25 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Load Q/m2 |  | 2.5 |  |  |  | 5 |  |  |  | 2.5 |  |  |  |
| Depth |  | 9 |  |  |  | 3.3 |  |  |  | 9 |  |  |  |
| span |  | 7.5 |  |  |  | 4 |  |  |  | 7.5 |  |  |  |
| Load kN/m |  | 121.8 |  |  |  | 32.3 |  |  |  | 121.8 |  |  |  |
| Load kN |  | 913.8 |  |  |  |  |  |  |  | 913.8 |  |  |  |
| Shear |  | 913.8 |  |  |  | 129.2 |  |  |  | 913.8 |  |  |  |
| support | E8 |  |  | E6 |  |  |  | E5 |  |  |  | E4 |  |
|  | Column | Slab 86 |  | slab 68 | Column | Slab 65 |  | slab 56 | Column | Slab 54 |  | slab 45 | Column |
| distribution | 24\% | 76\% |  | 50\% | 15\% | 35\% |  | 35\% | 15\% | 50\% |  | 76\% | 24\% |
| FEM |  | 571.1 |  |  |  | 43.1 |  |  |  | 571.1 |  |  |  |
| Moment |  | 571.1 |  | -571.1 |  | 43.1 |  | -43.1 |  | 571.1 |  | -571.1 |  |
| Balance | -137.07 | -434.0 |  | 264.0 | 79.2 | 184.8 |  | -184.8 | -79.2 | -264.0 |  | 434.0 | 137.1 |
| Distribute |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Carry over |  | 132.0 |  | -217.0 |  | -92.4 |  | 92.4 |  | 217.0 |  | -132.0 |  |
| Balance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Distribute | -31.68 | -100.3 |  | 154.7 | 46.4 | 108.3 |  | -108.3 | -46.4 | -154.7 |  | 100.3 | 31.7 |
| Carry over |  | 77.4 |  | -50.2 |  | -54.2 |  | 54.2 |  | 50.2 |  | -77.4 |  |
| Balance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Distribute | -18.57 | -58.8 |  | 52.2 | 15.6 | 36.5 |  | -36.5 | -15.6 | -52.2 |  | 58.8 | 18.6 |
| Carry over |  | 26.1 |  | -29.4 |  | -18.3 |  | 18.3 |  | 29.4 |  | -26.1 |  |
| Balance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Distribute | -6.26 | -19.8 |  | 23.8 | 7.1 | 16.7 |  | -16.7 | -7.1 | -23.8 |  | 19.8 | 6.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | -193.57 | 193.6 |  | -373.0 | 148.4 | 224.6 |  | -224.6 | -148.4 | 373.0 |  | -193.6 | 193.6 |

## Column design summary

Column E4,C4, E8,C8

|  | 8 H 14 <br> H6 links at 200 <br> $350 \times 400 \mathrm{~mm}$ <br> $\mathrm{f}_{\mathrm{ck}}=30 \mathrm{MPa}$ |
| :---: | :---: |

Column E5, E6

| $\bullet \bullet$ | $\bullet$ | $\bullet$ | 8 H 12 |
| :--- | :--- | :--- | :--- |
| $\bullet$ |  | $\bullet$ | H 6 links at 240 |
| $350 \times 350 \mathrm{~mm}$ |  |  |  |
| $\bullet$ | $\bullet$ | $\bullet$ | $\mathrm{f}_{\mathrm{ck}}=30 \mathrm{MPa}$ |

### 4.3 Slab analysis / levels 3-18

Slabs between grid 2 and 4 were initially evaluated as flat slabs. The spans required in lower levels (3 to 6) are in a range ( $9.5-12 \mathrm{~m}$ ) outside the optimal. The difference in height between a flat slab and slab+beam would not be significant with the disadvantage of having a smaller clearance within the bay.

Bay 1 was than changed to a slab and beam system and analysed as a two way slab. The geometry was simplified into a rectangular shape of $6.5 \times 11.5 \mathrm{~m}$. It was assumed that the slab has fixity at the corners to prevent torsion and uplifting. Calculation are based on Example 8.5.2 from Mosley (2012). A summary of reinforcement is shown in Table 4.3.

Bays within grid 4 and 8 are proposed as flat slabs considering the reduced spans that allow to take full advantage of the reduced thickness of this type of structure. Reinforcement for Bay 2 is shown in Table 4.3. Calculation follows the same procedure as for upper levels and are not shown in this document. Refer to previous pages


Fig: 4.3.2: diagram of moments for Bay 1 (two way slab)


Fig: 4.3.3: diagram of moments for Bay 2 (flat slab)

Table: 4.3: summary of reinforcement for Bay 1 and 2

| Bay | Direc- <br> tion | 1,3,7,9 | 2,8 | 4,6 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Y | H14@200 | H10@225 | H14@275 | H10@225 |
|  | Z | H14@200 | H14@200 | H14@250 | H14@250 |
|  | Y | H10@200 | H10@150 | H10@200 | H10@150 |
|  | $Z$ | H8@150 | H8@150 | H8@150 | H8@150 |

Note: the analysis for Bay 1 was simplified to a rectangular shape, shown with the dashed lines, of size $12.2 \mathrm{~m} \times 6.5 \mathrm{~m}$


Figure 4.3.1: ceiling plan of level 2

TWO WAY SLAB LEVEL 3 (as per Brooker2006)
The irregular shape of the slab is approximated to a rectangular one of:

Dimensions:
$I_{x}:=6.5 m \quad I_{y}:=12.2 m \quad h_{s l}:=\frac{I_{y}}{36}=0.339 m \quad \frac{I_{y}}{I_{x}}=1.877$
Effective depth:
$h_{S I}:=350 \mathrm{~mm} \quad d:=h_{S I}-45 \mathrm{~mm}-8 \mathrm{~mm}=0.297 \mathrm{~m}$

Coefficients for restrained slab (T3.14 BS8110)
Short span,continuos edge:

$$
\begin{aligned}
& \beta_{x e}:=0.087 \\
& \beta_{x m}:=0.065 \\
& \beta_{y e}:=0.045 \\
& \beta_{y m}:=0.034
\end{aligned}
$$

## ULTIMATE LOAD

Imposed load
$g_{k}:=h_{s l} \cdot 25 \frac{\mathrm{kN}}{\mathrm{m}^{3}}=8.75 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{2}} \quad q_{k}:=5 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
Ultimate load:

$$
n:=1.35 \cdot g_{k}+1.5 \cdot q_{k}=19.313 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{2}}
$$

MOMENT AT EDGE, SHORT SPAN
$M:=\beta_{x e} \cdot n \cdot I_{X}{ }^{2}=70.988 \cdot \mathrm{kN} \cdot \mathrm{m} \quad b:=1000$
$f_{c k}:=30 \mathrm{MPa} \quad f_{y k}:=\frac{500}{1.15} \mathrm{MPa}$
$K:=\frac{M}{\left(b \cdot d^{2} \cdot f_{c k}\right)}=0.027$
$Z:=d \cdot\left[0.5+\left(0.25-\frac{K}{1.133}\right)^{0.5}\right]=289.7 \mathrm{~mm}$
$\frac{Z}{d}=0.976 \quad$ Design for $0.95 \quad Z:=0.95 \cdot d$
$A_{s}:=\frac{M}{0.87 \cdot f_{y k} \cdot Z}=665.14 \frac{\mathrm{~s}^{2}}{\mathrm{~kg}} \cdot \frac{\mathrm{~mm}}{}{ }^{2}$

## H14@200 (770mm2)

MOMENT AT MIDSPAN SHORT SPAN
$M:=\beta_{x m} \cdot n \cdot I_{X}{ }^{2}=53.037 \cdot k N \cdot m \quad b:=1000$
$f_{c k}:=35 \mathrm{MPa} \quad f_{y k}:=\frac{500}{1.15} \mathrm{MPa}$
$K:=\frac{M}{\left(b \cdot d^{2} \cdot f_{c k}\right)}=0.017$
$Z:=d \cdot\left[0.5+\left(0.25-\frac{K}{1.133}\right)^{0.5}\right]=292 . \mathrm{mm}$
$\frac{Z}{d}=0.985 \quad$ Design for $0.95 \quad Z:=0.95 \cdot d$
$A_{s}:=\frac{M}{0.87 \cdot f_{y k} \cdot Z}=496.944 \cdot \frac{\mathrm{~mm}^{2}}{\mathrm{~m}}$

## H14@250 (616mm2)

## MOMENTAT EDGE, LONG SPAN

$M:=\beta_{y e} \cdot n \cdot I_{X}{ }^{2}=36.718 \cdot k N \cdot m \quad b:=1000$
$f_{c k}:=30 \mathrm{MPa} \quad f_{y k}:=\frac{500}{1.15} \mathrm{MPa}$
$K:=\frac{M}{\left(b \cdot d^{2} \cdot f_{c k}\right)}=0.014$
$Z:=d \cdot\left[0.5+\left(0.25-\frac{K}{1.133}\right)^{0.5}\right]=293 . \Xi \mathrm{mm}$
$\frac{Z}{d}=0.988 \quad$ Design for $0.95 \quad Z:=0.95 \cdot d$
$A_{s}:=\frac{M}{0.87 \cdot f_{y k} \cdot Z}=344.038 \frac{\mathrm{~s}^{2}}{\mathrm{~kg}} \cdot \frac{\mathrm{~mm}^{2}}{\mathrm{~m}}$

## H14@275 (560 mm2)

## MOMENT AT MIDSPAN LONG SPAN

$M:=\beta_{y m} \cdot n \cdot I_{x}{ }^{2}=27.742 \cdot \mathrm{kN} \cdot \mathrm{m} \quad b:=1000$
$f_{c k}:=35 \mathrm{MPa} \quad f_{y k}:=\frac{500}{1.15} \mathrm{MPa}$
$K:=\frac{M}{\left(b \cdot d^{2} \cdot f c k\right)}=8.986 \times 10^{-3}$
$Z:=d \cdot\left[0.5+\left(0.25-\frac{K}{1.133}\right)^{0.5}\right]=294 . \mathrm{mm}$
$\frac{Z}{d}=0.992 \quad$ Design for $0.95 \quad Z:=0.95 \cdot d$
$A_{s}:=\frac{M}{0.87 \cdot f_{y k} \cdot Z}=259.94 \cdot \frac{\mathrm{~mm}^{2}}{\mathrm{~m}}$

## SHEAR

Coefficient (Table 3.15 BS8110) $\quad \beta_{V x}:=0.5$
$V_{S X}:=\beta_{V X} \cdot n \cdot I_{X}=62.766 \cdot \frac{\mathrm{kN}}{\mathrm{m}}$
$v:=\frac{V_{s x}}{b \cdot d}=0.211 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$
$v_{c}:=\frac{100 A_{s}}{b \cdot d}=0.088$
v.c > v No shear reinforcement needed

## DEFLECTION

Initial data: $\quad b:=1000 \quad f_{y k}:=475 \mathrm{MPa} \quad f_{y}:=500$

$$
f_{c k}:=35 M P a \quad d=297
$$

Maximum saaaina moment:
$M_{\text {sag }}:=\beta_{x e} \cdot n \cdot I_{x}{ }^{2}=70.988 m^{2} \cdot \frac{\mathrm{kN}}{\mathrm{m}}$
$K:=\frac{M_{\text {sag }}}{\left(b \cdot d^{2} \cdot f_{c k}\right)}=0.012$
$Z:=d \cdot\left[0.5+\left(0.25-\frac{K}{1.133}\right)^{0.5}\right]=293 . \mathrm{mm}$
$\frac{Z}{d}=0.989 \quad$ Design for $0.95 \quad Z:=0.95 \cdot d$
Reinforcement required:
$A_{s}:=\frac{M_{\text {sag }}}{0.87 \cdot f_{y k} \cdot Z}=608.824 \mathrm{~m} \cdot \mathrm{~mm}^{2}$
Try. $A_{S_{-} \text {eff }}:=753 \mathrm{~mm}^{2} \quad \mathrm{H} 12$ @150
Actual span/depth: $\quad \frac{I_{X}}{d}=21.886$
$f_{s}:=\frac{2 \cdot f_{y} \cdot A_{s}}{3 \cdot A_{s_{-}} \text {eff }}=269.51 \mathrm{~m} \frac{M_{\text {sag }}}{b \cdot d^{2}}=0.805 \mathrm{~m}$
Modification factor: (Table C7 in Brooker 2006)

$$
M F:=1.37
$$

Allowable span/depth $\quad$ MF•26 $=35.62$
$\frac{I_{x}}{d}=21.886$
greater than I.x/d therefore ok

### 4.4 Beam analysis level 2

## BEAM REINFORCEMENT E2-F4

The irregular shape of the slab is approximated to a rectangular one of:

Dimensions:

$$
I_{x}:=6.5 m \quad I_{y}:=12.2 m
$$

$$
h_{s l}:=\frac{I_{y}}{36}=0.339 m \quad \frac{I_{y}}{I_{x}}=1.877
$$

Effective depth:
$h_{\text {sl }}:=350 \mathrm{~mm} \quad h_{\text {beam }}:=600 \mathrm{~mm}$
$f_{c k}:=30 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \quad f_{y k}:=500 \mathrm{MPa}$
$d:=h_{\text {beam }}-40 \mathrm{~mm}-32 \mathrm{~mm}=0.528 \mathrm{~m} \quad b:=400 \mathrm{~mm}$

## ULTIMATE LOAD

Imposed load
$g_{k}:=h_{s \mid} \cdot 25 \frac{\mathrm{kN}}{\mathrm{m}^{3}}=8.75 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{2}} \quad q_{k}:=2.5 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
Ultimate load $/ \mathrm{m} 2: \quad n:=1.35 \cdot g_{k}+1.5 \cdot q_{k}=15.563 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
Ultimate load: $\quad U D L:=n \cdot I_{X} \cdot I_{y} \cdot 0.25=308.527 \cdot \mathrm{kN}$

## Reinforcement required at support:

$M_{\text {sup }}:=U D L \cdot \frac{l_{y}}{12}=313.669 \cdot \mathrm{kN} \cdot \mathrm{m}$
$K:=\frac{M_{\text {sup }}}{b \cdot d^{2} \cdot f_{c k}}=0.094 \begin{aligned} & \text { below } 0.167, \text { no compression } \\ & \text { reinforcement required }\end{aligned}$
$Z:=d \cdot\left[0.5+\left(0.25-\frac{K}{1.133}\right)^{0.5}\right]=479.929 \cdot \mathrm{~mm}$
$\frac{Z}{d}=0.909 \quad \begin{aligned} & \text { OK }, \\ & \text { above } 0.82\end{aligned}$
$A_{s}:=\frac{M_{\text {sup }}}{0.87 \cdot f_{y k} \cdot Z}=1.502 \times 10^{3} \cdot \mathrm{~mm}^{2}$
$\rho:=\frac{A_{S}}{b \cdot d}=0.711 \% \quad$ Acceptable
Try $3 \mathrm{H} 26(1590 \mathrm{~mm} 2) \quad A_{s_{-}}$eff $:=1590 \mathrm{~mm}^{2}$
Spacing $250-2 \cdot 40-2 \cdot 10-26=124 \quad \mathrm{~mm}$

Steel stress under quasi permanent loading:
$\sigma_{z}:=\frac{f_{y k}}{\gamma_{m s}}\left(\frac{\psi_{2} \cdot q_{k}+g_{k}}{1.5 q_{k}+1.35 g_{k}}\right) \cdot\left(\frac{A_{s}}{A_{s_{-} \text {eff }}}\right) \cdot \frac{1}{\delta}=252.998 \cdot \mathrm{MPa}$
Maximum diameter 16 mm or distance 175 mm .
H28@122 acceptable.

## Reinforcement in the span

$M_{\text {span }}:=U D L \cdot \frac{I_{y}}{24}=156.834 \mathrm{~m} \cdot \mathrm{kN}$
$K:=\frac{M_{\text {span }}}{b \cdot d^{2} \cdot f_{c k}}=0.047 \begin{aligned} & \text { below } 0.167 \text {, no compression } \\ & \text { reinforcement required }\end{aligned}$
$Z:=d \cdot\left[0.5+\left(0.25-\frac{K}{1.133}\right)^{0.5}\right]=505.165 \cdot \mathrm{~mm}$
$\frac{Z}{d}=0.957 \quad$ OK , above 0.82
$A_{s}:=\frac{M_{\text {sup }}}{0.87 \cdot f_{y k} \cdot Z}=1.427 \times 10^{3} \cdot \mathrm{~mm}^{2}$
$\rho:=\frac{A_{S}}{b \cdot d}=0.676 . \% \quad$ Acceptable
Try 3 H26 (1590 mm2) $\quad A_{s_{2} e f f}:=1590 \mathrm{~mm}^{2}$
Spacing $\quad 250-2 \cdot 40-2 \cdot 10-26=124 \quad \mathrm{~mm}$
Steel stress under quasi permanent loading:
$\sigma_{z}:=\frac{f_{y k}}{\gamma_{m s}}\left(\frac{\psi_{2} \cdot q_{k}+g_{k}}{1.5 q_{k}+1.35 g_{k}}\right) \cdot\left(\frac{A_{s}}{A_{s_{-}} \text {eff }}\right) \cdot \frac{1}{\delta}=240.359 \cdot \mathrm{MPa}$

Maximum diameter 16 mm or distance 200mm.
H28@122 acceptable.

## Deflection

Reinforcement required $\quad A_{S}:=1387 \mathrm{~mm}^{2}$
Reinforcement provided $\quad A_{s_{-}}$eff $:=2410 \mathrm{~mm}^{2}$
Reinforcement ratio

$$
\rho:=\frac{A_{s}}{h_{\text {beam }} \cdot h_{s l}}=0.66 . \%
$$

Length to span ratio from Table NA.5, with fck=30 and considering this beam as end span of a continuos beam:
$K:=1.3$
From table (Mosley Fig 6.3), ratio

$$
R:=21.7
$$

Final ratio

$$
R:=K \cdot R=28.21
$$

To avoid damages beyond 7 m :

$$
R:=R \cdot \frac{7 m}{I_{y}}=16.186
$$

Modification for steel area provided:
$R:=R \cdot \frac{f_{y k}}{500 \mathrm{MPa}} \cdot \frac{A_{s_{-}} \text {eff }}{A_{s}}=28.124$
Span to effective depth provided:
$\frac{I_{y}}{d}=23.106 \quad \begin{aligned} & \text { deflection requirements likely } \\ & \text { to be satisfied }\end{aligned}$

## Revise reinforcement at mid span as:

3H32 ( $2410 \mathrm{~mm}^{\wedge}$ ) due to deflection.

## Spacing <200 is acceptable to avoid cracking

 above 0.3 mm
## Shear

$V_{E d}:=145 k N$
$v_{E d}:=\frac{V_{E d}}{h_{s l} \cdot h_{\text {beam }}}=0.69 \cdot \mathrm{MPa}$
v .Rd maximum considering cotangent as 2.5 amd f.yk as 30 MPa is:
$v_{R d}:=3.64 \mathrm{MPa}$
Max shear capacity greater than
shear at support.
Shear reinforcement above:
$\cot \theta:=2.5 \quad f_{y w d}:=435$
$\begin{aligned} & \begin{array}{l}\text { Reinforcement area / spacing ratio } \\ (\text { EN1992-1-1 6.2.3(3)) }\end{array}\end{aligned} \frac{V_{E d} \cdot 10^{3}}{Z \cdot f_{y w d} \cdot \cot \theta}=0.264$

Use H8 at 250 mm

### 4.5 Column (F4) analysis level 2

Column F4 on level 2 can be analysed under the following stress:

Axial load from upper structure:

$$
\mathrm{N}_{\mathrm{Ed}}=4.710^{3} \mathrm{kN}
$$

Crushing load $\mathrm{N}_{\mathrm{ult}}=5.510^{3} \mathrm{kN}$
Moment on Y direction: the moment from the beam E2-F4 is in almost equilibrium ( $\mathrm{M}=5 \mathrm{kNm}$ ) with the moment from the slab F4-F5. The total moment is therefore:
$M_{\text {Edyy }}=37 \mathrm{kNm}$
Moment on $Z$ direction is the sum of moment produced by the flat slab ( 120 kNm ), 0.05\% of moment from lateral load and the eccentricity of the axial load.
$M_{\text {Edzz }}=108 \mathrm{kNm}$


8 H 22
H6 links at 400
$500 \times 550 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{ck}}=30 \mathrm{MPa}$

Summary for column F4


Figure 4.5.1: diagram showing the wind loading acting on the building

COLUMN Level 2 Column F4

## DIMENSIONS AND MATERIALCHARACTERISTICS

Column
$y:=500 \mathrm{~mm}$

$$
z:=550 \mathrm{~mm} \quad h_{\text {col }}:=3.5 \mathrm{~m}
$$

dia $_{b a r}:=22 \mathrm{~mm} \quad$ dia $_{\text {link }}:=8 \mathrm{~mm}$
$f_{c d}:=\frac{30}{1.5} \mathrm{MPa} \quad f_{y d}:=\frac{500}{1.5} \mathrm{MPa}$
Beam E2-F4
$y_{24}:=12.2 m \quad z_{24}:=.35 m \quad h_{b}:=.55 m$
Slab Grid 5-6
$y_{45}:=7.5 m \quad z_{45}:=5.1 m \quad h_{\text {slab }}:=.30 m$

## COVER

As per EN1992-1-2 TAble 5.2a and REI 12045 mm cover $:=45 \mathrm{~mm}$

## ACTIONS

Load from slab weight, variable load and cladding. $Y$ direction grid 2-4, $Z$ direction grid $E$ to $F$

Equation 6.10 is used, with factor obtained from National Annex of:

Permanent actions unfavourable:
$\gamma_{p u}:=1.35$
Permanent actions favourable:
$\gamma_{p f}:=1$

Leading variable actions unfavourable: $\quad \gamma_{v u}:=1.5$

Leading variable actions favourable:

Leading variable
actions unfavourable: $\quad \gamma_{a u}:=1.5 \cdot 0.7$
Accompaigning variable $\quad \gamma_{a f}:=0$
actions favourable:

## AXIAL LOADING

$$
g_{k}:=25 \frac{\mathrm{kN}}{\mathrm{~m}^{3}} \cdot h_{\text {slab }}=7.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \quad g_{\text {clad }}:=2 \frac{\mathrm{kN}}{\mathrm{~m}^{2}}
$$

Area supported on levels 18-22:

$$
A_{1922}:=4 m \cdot 5.3 \cdot m=21.2 m^{2}
$$

## Leading variable action:

The leading variable is assumed to be variable loads on the structure. Wind is consider accoimpaigning variable due to shear walls taking most of lateral force and

$$
q_{k}:=2.5 \frac{\mathrm{kN}}{\mathrm{~m}^{2}}=2.5 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{2}}
$$ leaving each column with $0.05 \%$ of the load.

$Q_{1922}:=A_{1922} \cdot\left(\gamma_{v u} \cdot q_{k}\right) \cdot 4=318 \cdot k N$
$Q_{318}:=A_{318} \cdot\left(\gamma_{v u} \cdot q_{k}\right)=382.5 \cdot \mathrm{kN}$
$Q_{\text {tot }}:=Q_{1922}+Q_{318}=7.005 \times 10^{5} \mathrm{~N}$
Sum of Area supported on levels 3-18:

$$
A_{318}:=102 m^{2}
$$

## Permanent loading:

$$
\begin{aligned}
& G_{1922}:=A_{1922} \cdot\left(\gamma_{p u} \cdot g_{k}\right) \cdot 4=858.6 \cdot \mathrm{kN} \\
& G_{318}:=A_{318} \cdot\left(\gamma_{p u} \cdot g_{k}\right)=1.033 \times 10^{3} \cdot \mathrm{kN}
\end{aligned}
$$

For cladding
$G_{1922 c}:=\left(7 m \cdot 3.5 \mathrm{~m} \cdot 2 \frac{\mathrm{kN}}{\mathrm{m}^{2}}\right) \cdot 4 \cdot \gamma_{p u}=264.6 \cdot \mathrm{kN}$
$G_{318 c}:=\gamma_{p u}\binom{3.75 m \cdot 3.5 m \cdot 15 \ldots}{+3.5 m \cdot 15 \cdot \frac{12 m}{2}} \cdot 2 \frac{\mathrm{kN}}{\mathrm{m}^{2}}=1.382 \times 10^{3} \cdot \mathrm{kN}$
Columns :
$G_{1922 c I}:=\gamma_{p u} \cdot 3.5 m \cdot 4 \cdot .35 m \cdot .45 m \cdot 25 \frac{\mathrm{kN}}{\mathrm{m}^{3}}=74.419 \cdot \mathrm{kN}$
$G_{318 c I}:=\gamma_{p u} \cdot 3.5 m \cdot 15 \cdot .45 \mathrm{~m} \cdot .55 \mathrm{~m} \cdot 25 \frac{\mathrm{kN}}{\mathrm{m}^{3}}=438.539 \cdot \mathrm{kN}$
$G_{\text {tot }}:=G_{1922}+G_{318}+G_{1922 c} \cdots=4.051 \times 10^{6} \mathrm{~N}$
$+G_{318 c} \ldots$
$+G_{1922 c l}+G_{318 c l}$

| $\mathrm{Q}_{\mathrm{k}} 7 \mathrm{kN} / \mathrm{m}$ |  | $\mathrm{Q}_{\mathrm{k}} 19 \mathrm{kN} / \mathrm{m}$ |
| :---: | :---: | :---: |
| $\mathrm{G}_{\mathrm{k}} 15 \mathrm{kN} / \mathrm{m}$ | $\mathrm{G}_{\mathrm{k}} 51 \mathrm{kN} / \mathrm{m}$ | $\mathrm{G}_{\mathrm{k}} 51 \mathrm{kN} / \mathrm{m}$ |
| 11.2 m | 7.5 m | 7.5 m |

Figure 4.5.2 load distribution along E2-F4-F7 on level 2


Figure 4.5.3: moment distribution along E2-F4-F7 on level 2

## Accompaining variable (wind)

Wind pressure is simplified as:
Levels 19-22 $\quad P_{1922}:=1.588 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$

Levels 19-22

$$
P_{318}:=1.488 \frac{\mathrm{kN}}{\mathrm{~m}^{2}}
$$

The application point in respect to the column base on level 2 is place halfway through the height section considered:
$L_{1922}:=72.6 m-9.6 m=63 m$
$L_{318}:=37.7 m-9.6 m=28.1 m$
Facade area:
$A_{1922}:=14 m \cdot 19.8 m=277.2 m^{2}$
$A_{318}:=1447 m^{2}$
Force applied in each seciton of the building:
$F_{w 1922}:=A_{1922} \cdot P_{1922}=4.402 \times 10^{5} \mathrm{~N}$
$F_{w 318}:=A_{318} \cdot P_{318}=2.153 \times 10^{6} \mathrm{~N}$
Portion ( $0.05 \%$ ) of the moment produced at the base of the column by wind:
$M_{w}:=\binom{F_{w 1922} \cdot L_{1922} \cdots}{+F_{w 318} \cdot L_{318}} \cdot .05 \%=44.118 \cdot k N \cdot m$

## DISTRIBUTION FACTORS

Stiffness, upper column

$$
E_{u c}:=\frac{y^{3} \cdot z}{h_{c o l}}=19.643 L
$$

Stiffness, lower column

$$
E_{l c}:=E_{u c}
$$

Stiffness, beam E2-F4

$$
E_{b 24}:=z_{24} \cdot \frac{h_{b}^{3}}{y_{24}}=4.773 \mathrm{~L}
$$

Stiffness, slab grid 45,

$$
E_{s / 45}:=z_{45} \cdot \frac{h_{s l a b}^{3}}{y_{45}}=18.36 \mathrm{~L}
$$

Distribution factor upper and lower column in F4

$$
D F_{u c}:=\frac{E_{u c}}{E_{l c}+E_{u c}+E_{b 24}+E_{s / 45}}=0.315
$$

Distribution factor for beam 24

$$
D F_{s / 24}:=\frac{E_{b 24}}{E_{l c}+E_{u c}+E_{b 24}+E_{s / 45}}=0.076
$$

Distribution factor Y direction slab 56

$$
D F_{s / 45}:=\frac{E_{s / 45}}{E_{l c}+E_{u c}+E_{b 24}+E_{s / 45}}=0.294
$$

Distribution factor upper and lower column F5

$$
D F_{u c}:=\frac{E_{u c}}{E_{/ c}+E_{u c}+E_{s / 45}+E_{s / 45}}=0.258
$$

Distribution factor upper and lower column F7

$$
D F_{u c}:=\frac{E_{u c}}{E_{l c}+E_{u c}+E_{s / 45}}=0.341
$$

Distribution factor upper and lower column E2

$$
D F_{u c}:=\frac{E_{u c}}{E_{l c}+E_{u c}+E_{b 24}}=0.446
$$



Figure 4.5.4: distribution factors along E2-F4-F7 on level 2

SLENDERNESS CHECK
factor := 0.85
From BS8110:Part 1:1997
$I_{0}:=(3500 \mathrm{~mm}-300 \mathrm{~mm}) \cdot$ factor $=2.72 \mathrm{~m}$
$\lambda_{z}:=3.46 \cdot \frac{I_{0}}{z}=17.111 \quad \lambda_{y}:=3.46 \cdot \frac{I_{0}}{y}=18.822$
$A:=0.7$
A.s taken from end of calculation:
$\omega:=\frac{A_{s} \cdot f_{y d}}{y \cdot z \cdot f_{c d}}=0.152 \quad B:=(1+2 \cdot \omega)^{0.5}=1.142$
Worst case for braced structures
$C:=1.7$
$n:=\frac{N_{E d}}{y \cdot z \cdot f a c t o r \cdot f_{c d}}=1.016$
$\lambda_{\lim }:=20 \cdot \frac{A \cdot B \cdot C}{n^{0.5}}=26.948$
Column not slender since $\lambda \lim >\lambda y$ and $\lambda z$

LOADS FROM SLAB ON LEVEL 2
$U D L_{24}:=z_{24} \cdot\left(1.35 \cdot g_{k}+1.5 \cdot q_{k}\right)=4.856 \cdot \frac{\mathrm{kN}}{\mathrm{m}}$
$U D L_{45}:=z_{45} \cdot\left(1.35 \cdot g_{k}+1.5 \cdot q_{k}\right)=70.763 \cdot \frac{k N}{m}$
$U D L_{45 \min }:=z_{45} 1.5 \cdot g_{k}=57.375 \cdot \frac{\mathrm{kN}}{\mathrm{m}}$
$U D L_{z 24}:=y_{24} \cdot\left(1.35 \cdot g_{k}+1.5 \cdot q_{k}\right)=169.275 \cdot \frac{\mathrm{kN}}{\mathrm{m}}$
$U D L_{z 45}:=y_{45} \cdot\left(1.35 \cdot g_{k}+1.5 \cdot q_{k}\right)=104.063 \cdot \frac{\mathrm{kN}}{\mathrm{m}}$

## MOMENTS FROM STRUCTURE ON LEVEL 3

In $Y$ direction the total moment is given by moment created by horizontal structure in level 3 and axial load:
$M_{\text {str. } y}:=21 \mathrm{kN} \cdot \mathrm{m}$
$M_{E d y y}:=M_{\text {str. } . y}+N_{E d} \cdot \frac{I_{0}}{400}=53.31 \cdot \mathrm{kN} \cdot \mathrm{m}$

In Z direction the moment from the flat slab is limited to 120 kNm since F 4 is an edge column. Worst case, with wind in the same direction was considered
$M_{\text {str. } z}:=120 \mathrm{kN} \cdot \mathrm{m} \quad M_{W}=44.118 \cdot \mathrm{kN} \cdot \mathrm{m}$
$M_{E d z z}:=M_{\text {str. } \mathrm{z}}+M_{w}+N_{E d} \cdot \frac{I_{0}}{400}=196.428 \cdot \mathrm{kN} \cdot \mathrm{m}$

DESIGN REINFORCEMENT
$f_{c k}:=30 \mathrm{MPa}$

$$
f_{y k}:=500 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

$\frac{M_{E d z z}}{y \cdot z^{2} \cdot f_{c k}}=0.043$

$$
\frac{N_{E d}}{y \cdot z \cdot f_{c k}}=0.576 \quad z=0.55 \mathrm{~m}
$$

$d_{2}:=$ cover + dia $_{\text {link }}+$ dia $_{\text {bar }} \cdot 0.5=0.064 m$
$\frac{d_{2}}{z}=0.116$
From chartAs F.yk/bhf.yk (Harrison2007a, p39)
ratio := 0.11
$A_{s}:=\frac{\text { ratio } \cdot y \cdot z \cdot f_{c k}}{f_{y k}}=1.815 \times 10^{3} \cdot \mathrm{~mm}{ }^{2}$
8 bars $\mathrm{H} 18\left(2040 \mathrm{~mm}^{\wedge} 2\right) \quad A_{s}:=2040 \mathrm{~mm}^{2}$
Crushing load of a truly loaded column
may be taken as: (Mosley, p.267)
$N_{u d}:=0.567 \cdot f_{c k} \cdot y \cdot z+0.87 \cdot A_{s} \cdot f_{y k}=5.565 \times 10^{3} \cdot k N$
$N_{E d}=4.751 \times 10^{3} \cdot \mathrm{kN}$

Minimum area of steel needs to be above 0.002Ac
$A s_{\text {min }}:=0.002 \cdot y \cdot z=550 \cdot \mathrm{~mm}^{2} \quad \frac{A_{s}}{z \cdot y}=0.742 \cdot \%$

## DESIGN FIRE RESISTANCE

check that effective length $<3 \mathrm{~m}$

$$
I_{0}:=(3.1 m-0.3 m) \cdot .85=2.38 m
$$

check e<e.max $\quad e:=\frac{M_{E d y y}}{N_{E d}}=0.011 \mathrm{~m}$

$$
e_{m a x}:=0.15 \cdot z=0.083 m
$$

OK
Check reinforcement $<4 \% \quad \frac{A_{s}}{z \cdot y}=0.742 \cdot \%$

CHECK BIAXIAL BENDING
$N_{E d}=4.751 \times 10^{6} \mathrm{~N}$
$e_{z}:=\frac{M_{E d z z}}{N_{E d}}=41.34 \cdot \mathrm{~mm} \quad e_{y}:=\frac{M_{E d y y}}{N_{E d}}=11.22 \cdot \mathrm{~mm}$
$\frac{e_{y}}{e_{z}}=0.271 \quad \begin{aligned} & \text { between } 0.2 \text { and } 5, \text { design for biaxial } \\ & \text { bending needs to be checked }\end{aligned}$
From chart obtain ratio of As f.yk/bhf.ck
Revise reinforcement to 8 H 22 ( $3040 \mathrm{~mm} \mathrm{~m}^{\wedge}$ )
$A_{s_{-} e f f}:=3040 \mathrm{~mm}^{2} \quad A_{s_{-} e f f} \cdot \frac{f_{y k}}{y \cdot z \cdot f_{c k}}=0.184$
$\frac{N_{E d}}{z \cdot y \cdot f_{c k}}=0.576 \quad \frac{d_{2}}{y}=0.128$
$f_{\text {chart }}:=0.05$
$M_{R d}:=f_{\text {chart }} \cdot y \cdot z^{2} \cdot f_{c k}=226.875 \cdot \mathrm{kN} \cdot \mathrm{m}$
$N_{R d}:=z \cdot y \cdot f_{c d} \cdot 0.85+A_{s \_e f f} \cdot f_{y d}=5.688 \times 10^{3} \cdot \mathrm{kN}$ Value for a obtained from chart (Harrison2007a, Table5):
$\frac{N_{E d}}{N_{R d}}=0.835 \quad a:=1+\left(\frac{N_{E d}}{N_{R d}}-0.1\right) \cdot \frac{0.5}{0.6}=1.613$
$\left(\frac{M_{E d z z}}{M_{R d}}\right)^{a}+\left(\frac{M_{E d y y}}{M_{R d}}\right)^{a}=0.889$

Acceptable

## CHECK REINFORCEMENT

As minimum

$$
\frac{0.10 N_{E d}}{f_{y d}}=1.425 \times 10^{3} \cdot \mathrm{~mm}^{2}
$$

Reinforcement to area ratio

$$
\frac{A_{S_{-} \text {eff }}}{y \cdot z}=1.105 . \%
$$

Reinforcement is above $0.2 \%$ and below $4 \%$ and above As minimum.

## TRANSVERSE REINFORCEMENT

Ref. EC2 9.5.3\&NA
Diameter of bar shoudl exceed 6 m of $1 / 4$ of reinforcement bars
dia min $:=$ dia $_{\text {bar }} \cdot 0.25=5.5 \cdot \mathrm{~mm}$

## Diameter 6mm

Spacing given by the minimum

$$
20 \cdot d i a_{b a r}=440 \cdot m m
$$

$$
y=500 \cdot \mathrm{~mm}
$$

H6 @ 400 mm

$$
400 \mathrm{~mm}=400 \cdot \mathrm{~mm}
$$

$z \cdot y \cdot f_{c d} \cdot 0.85=4.675 \times 10^{6} \mathrm{~N}$

## 5. Horizontal loading, shear walls

Horizontal loading is mostly caused by wind. A preliminary analysis on the tensile stress applied to the shear wall was done in three point of the building. it was possible to have a first estimate of the amount of shear wall needed in different part of the building.

Figures 5.1, 5.2 and 5.3 show a possible layout for shear walls. As previsouly stated, upper levels, used as a penthouse are keps as free of vertical elements as possible. In the lower levels (2-18) partitions between apartmetments were assumed as shear walls. This seemed a reasonable assumption considering that the layout of the different units is unlikely to change.

A summary of result is show in Table 5.1 and calculation for one of the three levels in the following page.

Figure 5.1: structural diagram with shear walls on level 18

| Level | Wall | $\mathrm{N}_{\text {Ed }}$ <br> $(\mathrm{kN})$ | DF | "Wk <br> $(\mathrm{kNm})$ | $\sigma$ <br> $(\mathrm{MPa})$ | As <br> $(\mathrm{mm} 2)$ | Reinf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | D5 | 1254 | $49 \%$ | 3397 | 10 | 7497 | $\mathrm{H} 25 @ 125 \times 2$ |
| 10 | D5 | 1591 | $4 \%$ | 2652 | 8.4 | 5853 | $\mathrm{H} 24 @ 150 \times 2$ |
| 2 | D5 | 2600 | $4 \%$ | 4230 | 12.2 | 8400 | $\mathrm{H} 28 @ 125 \times 2$ |

An additional source for horizontal loading is created by the slanted structure on grid 2. In Figure 5.4 shows a diagram visualizing the subframe on level 2. The horizontal component of the axial loading acting on the column will produce a force $\mathrm{F}=$ axial loading * $\cos \left(77^{\circ}\right)$. This force should be considered in the analysis of the vertical structure on grid 4 especially at the point D4 where the beams meet the vertical shear wall.


Figure 5.1: structural diagram with shear walls on level 18


Figure 5.2: structural diagram with shear walls on level 10


Figure 5.3: structural diagram with shear walls on level 3


Figure 5.4: diagram showing the slanted column on

## SHEAR WALL (D5) ON LEVEL 2

## Axial load:

Trbutary area on supported by the wall: $\quad A:=8 m^{2}$
Load per m2 $\quad g_{k}:=7.5 \frac{\mathrm{kN}}{\mathrm{m}^{3}} \cdot .3 \mathrm{~m}=2.25 \times 10^{3} \mathrm{~Pa}$
Floors := 20
Wal dimensions $\quad t:=0.3 m \quad L:=2.5 m$

Load from wall:
$g_{\text {wall }}:=L \cdot t \cdot 3.5 \mathrm{~m} \cdot$ Floors $\cdot 25 \frac{\mathrm{kN}}{\mathrm{m}^{3}}=1.313 \times 10^{3} \cdot \mathrm{kN}$
Load from variable load:
$q_{k}:=5 \frac{\mathrm{kN}}{\mathrm{m}^{2}} \cdot$ A $\cdot$ Floors $=800 \cdot \mathrm{kN}$

Permanent actions unfavourable:

$$
\gamma_{p u}:=1.35
$$

Leading variable
actions unfavourable: $\quad \gamma_{v u}:=1.5$
Accompaigning variable actions unfavourable:

$$
\gamma_{a u}:=1.5 \cdot 0.7
$$

$$
\begin{aligned}
N_{E d}:= & \left(g_{w a l l}+A \cdot g_{k}\right) \cdot \gamma_{p u} \cdots=2.636 \times 10^{3} \cdot k N \\
& +\gamma_{a u} \cdot q_{k}
\end{aligned}
$$

## Moment generated by wind action:

Upper part, levels 18-22
$P:=1.588 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
$A_{w}:=4 \cdot 3.5 m \cdot 19.8 m=277.2 m^{2}$
$L_{\text {wind }}:=68 m$
$W_{k 1}:=P \cdot A_{W} \cdot L_{\text {wind }}=2.993 \times 10^{4} \cdot \mathrm{kN} \cdot \mathrm{m}$

Lower part, levels 2-18
$P:=1.588 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
$A_{w}:=1415 m^{2}$
$L_{\text {wind }}:=31.5 m$
$W_{k 2}:=P \cdot A_{W} \cdot L_{\text {wind }}=7.078 \times 10^{4} \cdot \mathrm{kN} \cdot \mathrm{m}$
$W_{k \_t o t}:=W_{k 1}+W_{k 2}=1.007 \times 10^{5} \cdot \mathrm{kN} \cdot \mathrm{m}$

Moment acting on the column:

Portion of moment take $\quad f:=.028$
${ }^{\prime} W_{k}:=W_{k \_t o t} \cdot f=2.82 \times 10^{3} \cdot \mathrm{kN} \cdot \mathrm{m}$

SHEAR WALLS
Ultimate axial load

$$
N_{E d}=2.636 \times 10^{3} \cdot \mathrm{kN}
$$

Ultimate in-plane moment $W_{k}=2.82 \times 10^{3} \cdot \mathrm{kN} \cdot \mathrm{m}$
Length of the wall $L:=2.5 m$
$t_{\text {wall }}:=.3 m$
Maximum applied tensile stress:
$M:=W_{k} \cdot \gamma_{v u}=4.23 \times 10^{3} \cdot \mathrm{kN} \cdot \mathrm{m}$
$\sigma:=\frac{N}{L \cdot t}+\frac{M}{\left(\frac{t_{\text {wall }} L^{2}}{6}\right)}=13.536 \cdot \mathrm{MPa}$
Area of reinforcement required:

Length of wall in tension

$$
L_{t}:=1 m
$$

$f_{y}:=500 \mathrm{MPa}$
$A_{\text {min }}:=\frac{\sigma \cdot L_{t} \cdot t_{\text {wall }}}{0.87 \cdot f_{y}}=9.335 \times 10^{3} \cdot \mathrm{~mm}^{2}$

## H28@125 (4928 mm2) on both face of the wall

Ultimate compressive load should be less than:
Area of concrete per unit length of wall

$$
A_{c}:=1 \mathrm{~m} \cdot t=3 \times 10^{5} \cdot \mathrm{~mm}^{2}
$$

$$
f_{c u}:=30 \mathrm{MPa}
$$

$F_{c}:=0.35 f_{c u} \cdot A_{c}+0.67 f_{y} \cdot A_{\text {min }}=6.277 \times 10^{3} \cdot \mathrm{kN}$

## 6.Health and Safety

The CDM 2015 regulation requires the designer to (amongst other duties):
-avoid foreseeable risks
-provide adequate information about significant risk
-co-ordinate their work with others

At the moment, being at a conceptual level of the design and with scarce site information, it becomes difficult to describe specific solutions. The main activities that would be carried are therefore described.

The first obligation, regarding the reduction of risks, can be addressed during different phases of the project. During pre-construction phase, together with client, gather available information related to health. Sources may be previous health and safety files, local conditions and regulations, assessment of the site. Fill gaps and provide information to designer and contractors. The preparation of a Construction Method Statement and a Construction Phase Plan (by principal contractor) will help in better understanding the construction process and related risks. These documents will inform on possible site rules and arrangements and requirements (CDM2015, Schedule 2) to be taken to ensure safety.

During the design phase, evaluate and foresee if particular details or moments during the construction may cause an hazard to workers. Possible hazards may be created by the movement of heavy pieces, use of dangerous tools, working at height, handling hazardous materials (see also CDM 2015, Schedule 3). Consider possible solutions by assessing alternatives and applying the general principles of preventions (CDM215, Appendix ).

The main document to provide information on risk is the Health and Safety File (CDM 2015, Appendix 4). This document shall be prepared by the principal designer. Feedback and coordination with client and contractors is essential.

The third obligation, to be fulfilled, requires the creation of a health and safety file. It is essential to involve client and contractors in the process and to make sure workers are aware of its content. It is important to establish a line of communication across client, designers, contractors and workers. It may be noted that a project of this size will involve numerous contractors and many of them will join the project at a later stage. The transmission of information should also consider this. Additionally, the file should be thought as a "live document" that can be updated and adjusted during the process. Feedback from workers is essential therefore a system supporting it should be created.

## References

BRITISH STANDARDS INSTITUTION. BS EN 1992-1-1, Eurocode 2 - Part 1-1: Design of concrete structures General rules and rules for buildings. BSI, 2004. 2a National Annex to Eurocode 2 - Part 1-1. BSI, 2005.

BRITISH STANDARDS INSTITUTION. BS EN 1992-1-2, Eurocode 2 - Part 1-2: Design of concrete structures Structural fire design. BSI, 2004. 3a National Annex to Eurocode 2 - Part 1-2. BSI, 2005.

BRITISH STANDARDS INSTITUTION. BS 8110: Structural use of concrete - Part 1: Code of practice for design and construction. BSI, 1997.

COODCHILD, CH, Economic concreteframe elements, Reinforced Concrete Council (now The Concrete Centre), Camberley, 1997,128 pp

BCA (2006) Manual for the design of concrete building structures to Eurocode 2.
Brooker, O. and The Concrete Centre (2006) Concrete Buildings Scheme Design Manual.
Mosley, W. H. and Bungey, J. H. (2012) ‘Reinforced Concrete Design’, Reinforced Concrete Design. doi: 10.1007/978-1-349-13058-0.

The Concrete Centre (2018) How to Design Concrete Structures using Eurocode 2 (second edition). Available at: www.concretecenter.com.

THE CONCRETE SOCIETY. Technical Report 64, Guide to the design and construction of RC flat slabs, TR64, CCIP022. TCS, 2007.




